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Introduction

It is well known that classically equivalent constructions of the real numbers may
yield distinct real number objects (e.g. Dedekind reals, Cauchy reals) when carried
out in topoi other than Sets. We introduce a type of real number, which we call a
semicontinuous real number, whose construction was suggested by Lawvere [8,9].
Such a real number is defined by a single closed cut in the rationals. In Sh(X), for
example, this construction yields the sheaf of upper (respectively, lower) semi-
continuous functions.

Work of Hofmann [3], Hofmann and Keimel [4], and others indicates that the
sheaf of upper semicontinuous functions is the natural recipient of the norm for
variable C*-algebras, variable Banach spaces, and variable metric spaces (also, see
Example 1.4 below). In this paper, we study semicontinuous real nu:nbers through
examples and by examining the general properties of such objects in an elementary
topos; we show that the object of nonnegative upper semicontinuous real numbers
has precisely the properties needed by a norm recipient. After defining semicontinu-
ous real numbers and looking at some examples, we show that the semicontinuous
reals are an internally complete poset. The existence of an internal ‘associated sheaf’
functor is demonstrated (Theorem 2.12) and is used in discussing the relationships
between the various real number objects. It is also used to define algebraic
structures on semicontinuous reals. We conclude with remarks concerning the
closed category structure of the semicontinuous reals.

I wish to thank Bill Lawvere, Bill Zame, Stephen Schanuel, and Andre Joyal for
helpful cornments and suggestions.

1. Definition and examples
Let S be an elementary topos with a natural numbers object N. Let Q denote the
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rationals and let 2 denote the subobject classifier in S. The power otjects 2X will be
denoted by PX.

Definition. Let u € PQ and let p, g denote generalized elements of Q. u is an upper
semicontinuous real number in S if y satisfies the following condition:

VpVq (p<g=qeu) & (pew). (usc)

We denote the subobject of upper semicontinuous reals by i : Ry, —— PQ. One can
similarly define R,, the object of lower semicontinuous reals.

An equivalent condition defining upper semicontinuous reals (which is used in the
following examples) is

Vot (up)= A ) ) (1.1)
q>p

The symbol A used in (1.1) refers to the internal left-adjoint of the Tseg map of an

internal poset [13].

Example 1.2. If S=Sets, a closed upper cut of the set of rational numbers is an
extended real number (+ o0 correspond to the instances in which the cut is empty or
all of Q).

Example 1.3. Let X be a topological space, U an open subset of X, and let R denote
the extended real numbers [— oo, o] with its usual topology. A function f: U—R is
upper semicontinuous iff for each re R, {x l S(x)<t} is an open subset of U.

In Sh(X), let 4 be an element of PQ defined over U. We define a function
i:U—RK as follows, using the identification of Q with locally constant rational
valued functions: for each xe U,

A(x) =inf{g(x): xe u(q) and g€ Q(U)}.

Let reR, and let xge {x:d(x)<t}. Then, ji(xp)<t, so by the definition of z
there must be a rational gy such that qy(xp)<t, go€ Q(U), and xo€ u(qy). Let V=
{x|qo(x)<1}NUNuiq,). V is an open neighborhood of x, and V¢ {x Iﬂ(x)<t},
hence g is an upper semicontinuous function on U.

Conversely, given any function f: U—R, define fe PQ as follows: if V is an open
subset of U and ge Q(V),

/i (g) =the interior of {xeV: f(x)<q}.

One can then verify that f satisfies (1.1) and is thus an upper semicontinuous real.
When these operations are restricted to upper semicontinuous functions and
appei semicontinuous reals, we obtain a natural isomorphism between R, and the
sheaf of R-valued upper semicontinuous functions.
For a construction which uses inhabited open cuts, see Mulvey [11] or Johnstone

{5}
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Example 1.4. This example, which is based on the preceding one, illustrates the
natural manner in which upper semicontinuous reals arise as norms in a topos.
Classically, the norm of a linear map F:Y —Z between normed linear spaces is
defined by a closed upper cut of real numbers (which could just as well be taken as a
closed upper cut of rationals):

|F|=inf{M=0: |F(y)|<=M|y| for all ye Y}.

Now, if Y and Z are normed linear spaces over X (see [1]), the natural extension of
the definition of the norm of a linear map F: Y —Z gives a continuously variable
closed upper cut of Q for each xe X as the norm of F, i.e. |F| is an upper semi-
continuous function on X.

Example 1.5. If M is a monoid and m,ne M, we say that m < n if there exists an
x€M such that xm=n. A function f: M- R is said to be order-reversing if m=<n
implies f(m)=f(n). In the topos of M-Sets (sets with a left M-action), Ry can be
characterized as the set of all order-reversing functions M —[R, with M-action
defined by (mf)(n) =f(nm). The details are analogous to Example 1.3.

Example 1.6. If P is a poset, let P denote the topological space whose elements are
those of P and in which the open sets are the right order-ideals of P. Using the equi-
valence between Sh(P) and Sets”, we can describe Ry, in Sets” as the functor whose
value at peP is given by (Ry),={f:(p -)-R | S is order-reversing}, where
q € (p, =) iff g > p; the restriction maps are obvious.

In general, the semicontinuous reals will be more closely linked with the topos
structure than are the Dedekind reals. For example, in M-Sets, the Dedekind reals
are just the constant reals. As another example, consider the fact that while any
realcompact space can be recovered from its ring of continuous functions, the open
sets themselves are not in general representable by continuous functions. On the
other hand, each open set is associated (through its characteristic function) with a
multiplicatively idempotent semicontinuous function.

Among the properties of the set of R-valued (nonnegative) upper semicontinuous
functions on a space X is that it is closed under the pointwise operations on
functions of addition, multiplication, finite suprema, and arbitrary infima [2].
These are desirable properties for a norm-recipient. The main body of this paper
will be concerned with determining whether (and in which way) these properties
extend to the object of upper semicontinuous reals in a topos.

2. Order structure

For each internal poset A in the topos S, we may deiine the order-reversing
morphism Tseg: A—PA; be Tsega iff a<bh. An internal poset A is internally
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complete if Tseg has an internal left-adjoint inf: PA—A. Equivalently, A4 is
internally complete if lseg: A—=PA has an internal left-adjoint sup: PA—A
(Mikkelsen [i0]). If A4 is internally complete, then so is A X for any object X of S. In
particular, 2- and hence PX- is an internally complete poset in any topos. The
internal left-adjoint to Tseg : PX — PPX shall be designated by N. Note that for any
geQ, Tsegge Ry.

We give R, the order which it inherits as a subobject of PQ, i.e., if ¢, w € Ry then
o<y iffip=<iy. If g€ Q, let age PQ be defined by pe ag iff p>gq. Restated, the
condition for y € PQ to be upper semicontinuous is

geu iff ag=pu. 2.1)
In the ensuing proofs, we shall use tools such as the ‘existence principle’ to

interpret various statements; full details may be found in [5], [6], and [10].

Lemma 2.2. Let F: X - PRy be a morphism of S. Let F* denote the composite

F di
X — P:QU

N
» PPQ—— PQ.

Then, F* is an upper semicontinuous real in S.

Proof. Using (2.1), F* is upper semicontinuous iff for every x:Y —X and
q:Y—Q, ge F*x iff ag<F*x. If x,q are as above, then for every y: WY and
A:W —=PQ, we have

ge F*x iff Aedi(Fxy) implies qveA, (2.3)
and

ag<F*x iff Aedi(Fxy) implies cagy<A. (2.4)

We first show that given (x,q):Y—=XxQ, geF*x implies ag<F*x. Let
(v, AY: W—=Y X PQ be given, and assume that A4 € Fi(Fxy). From the existence
principle, thereis anepic §: V—+Qanda¢: V — Ry such that ¢ € Fxyp and ip = Ap.
From (2.3) above, A € Fi(Fxy) gives gve A and hence gyfe AB. Since AB=ig,
qypP e ip. But ig is upper semicontinuous, so gy € i¢p implies agyf<i¢p = ApB. Since
B 1s epic, agy < A. Using (2.4), this shows that ag < F*x.

Conversely, assume that ag<F*x, and that A, y are given as above, with
A € di(Fxy). As before, we obtain an epic # and an upper semicontinuous ¢ such
that ¢ € Fxyp and ip = Af. Since ag=<F*x and A € Fi(Fxy), we obtain (by (2.4))
uqgy <A, and hence aqyf < AS =i¢p. The upper semicontinuity of i¢ gives gyBe ApB,
hence gve A, hence ge F*x by (2.3). I

The preceding lemma shows that N o Ji: PRy — PQ is itself an upper semicon-
tinuous real, hence it factors through i: Ry, —PQ. Let Inf: PR, — R, denote the
morphism such that i o Inf= N o i, Since / and i are convariant internal functors,
and since N is contravariant, Inf is contravariant.
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Theorem 2.5. Ry, is an internally complete poset.

Proof. We will demonstrate that Inf is internally left-adjoint to Tseg: Ry~ P(Ry),
i.e. if F: X—P(Ry) and ¢ : X =Ry, then

¢o<Inf(F) iff F<Tsego. (2.6)
Before proceeding, note that for every x: Y »X and u: Y- PQ,

¢<Inf(F) iff puedi(Fx) implies igpx=<yu, 2.7
and

F<1lseg¢ iff ueFx implies ue Tsegpx. (2.8)

First suppose ¢ <Inf(F’). A trivial application of the existence principle shows
that u € Fx implies iu € Zi(Fx). By (2.7), iu € Ji(Fx) implies ipx <iu. But ipx < iu iff
ox<u, and px=<u iff u e Iseg x.

Conversely, assume F< Tseg ¢ and that ;e PQ is given, with ue Fi(Fx). Since
u € di(Fx), there is an epic f: W—Y and a y: W —Ry such that we Fxf and
iy =upB. By (2.8), we Tseg pxB, hence ¢xB=<y; hence ipxB=<iy=up, so ipx=<u.
Thus ¢ < Inf(F) by (2.7), which shows that Inf and seg are adjoint. [

Corollary 2.9. lseg:Ry—P(Ry) has an internal left-adjoint, denoted Sup:
P(Ry)—Ry.

The internal completeness of Ry leads to an internal associa:ed sheaf functor
L : PQ—Ry. A morphism f: A— B between internally complete posets is said to be
inf-preserving if the following diagram commutes:

qf
PA——PB
ian infB (2' 10)
4—L— B

Lemma 2.11. Let A and B be internally complete posets and let f: A—B. Then, fis
inf-preserving iff f is an internal functor and has a left-adjoint g whick is sup-
preserving.

Proof. See Mikkelsen [10].

Theorem 2.12. i: Ry— PQ has an internal left-adjoint L : PQ—Ry. Moreover, L
is epic and is sup-preserving.

Proof. Inf was defined so that diagram (2.10) commutes, hence i is inf-preserving,
hence the desired L exists by the preceding lemma. L is epic because i is monic and L
is internally left-adjoint to i. [
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The next proposition summarizes some easy consequences of the internal
adjointness of L and /.

Proposition 2.13. If ue PQ and ¢ € Ry, then
(i) iLu is the least upper semicontinuous real which dominates u,
(ii) Lip=¢, and
(1) iLu = u iff u is upper semicontinuous.

Proof. (i) From adjointness, 1pp<iL, 50 u<iLu. For the same reason, u<i¢ iff
Lu<g.

(ii) Since ip <i@, adjointness gives Lip <¢ and i¢ <iL(i¢). But i¢ <iL(ip) iff
Q<Ligp.

(iii) If 4 is upper semicontinuous, we can write u = iy for some y: X -—~Ry. Ther,
iLu=i(Liy)=iy by (i), hence iLu=u. Conversely, iLu=u trivially implies
u=i(Lu), and so u factors through Ry. [

The above results generalize the fact that if { f;: X =R} is a family of upper semi-
continuous functions on a space X, then f=inf, f; (pointwise infimum) is an upper
semicontinuous function. L:PQ—R, is related to the upper semicontinuous
regularization f of an arbitrary function f: X —[R; the regularization f is defined
for each xe X by

Jx)=lim sup f(»).

f is upper semicontinuous and is the least upper semicontinuous function g such
that f<g, i.e. upper semicontinuous regularization is left-adjoint to the inclusion of
usc(X, R) in the set of all functions X =R (where both are categories with f—g iff
f=<8).

Arbitrary suprema of upper semicontinuous functions can be calculated using the
regularization: if f=sup, f; is the pointwise supremum, then [ is the least upper
bound (among the upper semicontinuous functions). In general, the internal
completeness of R, makes it a more useful real number object (as a norm-recipient)
than the Dedekind reals in that the greatest lower bound (and l.u.b.) of families of
‘real numbers’ always exists.

The next result points out one use of the internal regularization functor L.

Proposition 2.14. If ¢, w : X = PQ are upper semicontinuous, then the upper semi-
continuwous bingry meet and join of ¢ and y are ¢ \y and iL(¢V ), respectively.

Proof. First, let x: Y =X and g: Y —Q be given. Then, ge ¢xAyx iff g€ ¢x and
gewx iff ag=<=¢x and ag<wx iff ag<=@pxAyx. Hence ¢Ay is upper semi-
continuous; it is clearly the greatest element of R, which is dominated by both ¢ and
v because &, is a subobject of PQ.
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Second, iL(¢V y) is the least upper semicontinuous real which dominates ¢V y (by
2.13(i)), ¢V is the least element of PQ which dominates both ¢ and w, and hence
iL(@Vy) is the upper semicontinuous binary join of ¢ and . 5

In many instances, we will be considering a 4 € PQ which is known to be an upper
cut, i.e. u satisfies the following condition:

VpVq ((p<qhpep) = (qeu)), (2.15)

In other words, peu = ap=<u. The next result provides a useful description of Lu
for those u € PQ which satisfy (2.15).

Lemma 2.16. If u: X— PQ, then the following are equivalent:
(1) u satisfies (2.15).
(ii) for every {(x,q):Y—=XXQ, qeiLu iff aqg=<ux.

Proof. (ii)= (i) follows directly from the fact that u <iLu. Conversely, assume (i) is
satisfied. Define Ju: X —P such that for every (x,q):Y—=XxQ, geJux iff
aq <ux. Now, u<Ju. Moreover, Ju is upper semicontinuous. Since 4 < Ju and Ju is
upper semicontinuous, we obtain iLu<Ju (by 2.13(i)). On the other hand, if
q € Jux, then ag<ux<ilLux. Since iLu is upper semicont‘nuous, aq <iLux implies
qgeilLu; hence Ju<iLu. Thus, Ju=iLu. [

3. Other real number objects and the semicontinuous reals

The roster of real number objects in a topos includes the Cauchy reals, the
Dedekind reals, and the Dedekind—MacNeille reals, in addition to the upper (and
lower) semicontinuous reals. What relationships, if any, exist among these real
number objects? For example, it is well known that in Sh(X'), the Dedekind reals
can be characterized as the sheaf of continuous real-valued functions [11]. Since
every continuous function is upper semicontinuous, is it generally true that the
Dedekind reals will be a subobject of R;? The answer is yes, which we now proceed
to show.

Informally, a Dedekind real number is a pair {4, u) of elements of 2¢ such that 1
(respectively, u) is an inhabited, open lower (upper) cut, and such that A and u are
adjacent and disjoint. The conditions that {4, u) must satisfy are usually formulated
in the internal language of the topos. These conditions are:

(DR1) geld & dHp(p>qgApel)

(DR2) geu o Hp(p<qApep)

(DR 3) (qeAnpeu) = g<p

(DR 4) g<p = (qeAVpep)

(DR 5) Hg(ge ANIp(pep).

Let Rp—— 292 x Q22 denote the object of Dedekind reals. The properties of Rp, are
examined in [S] and in [12] (where they are c&!led the continuous reals).
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Lemma 3.1. Let ry=(,uy), r;={l1, u3) be Dedekind reals.
(I) I|SIZ lffuZSul.
(i) ry=ry iff uy=u,.

Proef. The proof of (i) may be found in Johnstone [5], lemma 6.63(ii). The second
part of our lemma follows directly from (i). [

Proposition 3.2. R, is a subobject of Ry.

Proof. We define f: Rp— Ry to be the composite

n L
[QD—»»QQ)(QQ 2—>QQ ¢[RU.

We claim that f is monic, i.e. if ry,r;: X = Rp and fry=fr,, then ry=r,. Let r;=
(/,u,); the assumpiion fr,=fr, means Lu,=Lu,. If we demonstrate that u,=u,,
then we will have r, = r, by the preceding lemma. Note that u; satisfies (2.15) because
of condition (DR 2) for Dedekind reals. Hence, using the characterization in
l.emma 2.16 of Lu for those u which satisfy (2.15), we have for any (x,g): Y~
X xQ,
ag<ux iff gelux
iff geLuyx (*)
iff ag=<u,x.

We use the above to show that u; <u,. Suppose (x,q): Y X x Q and that ge u,x.
By (DR 2), thereisanepic f:V—=Y and a p: V = such that p<gf and peu,xp.
Since u;xf satisfies (2.15), pew,xf implies ap<u,xf. By (»), we then have
ap <u,xf. Since p<qfl, we thus have gf € u,xf but f is epic, so g € u,x. Applying
the extensionality principle, this shows u;<uw,. Similarly u,<u,, hence u,=u,,
ry=ry, and fis monic. [J

Corollary 3.3. R, the object of ‘Cauchy reals’ (as defined in 6.67 of [5)) is a sub-
object of R.

Proof. It is shown in [5] and [12] that R, is a subobject of Rp. Applying
Proposition 3.2, we are done. [

We note that R, is isomorphic to Ry: if ue Ry, define —u by qe —u iff —gey;

and similarly for A€ R,. It is clear that —u e R, iff ye Ry and that —u; = —pu, iff
uy = u; hence the desired isomorphism.

4. Algebraic structures

We say ue PQ is nonnegative if u<7Tseg0 (0=additive identity of Q). R, will
denote the object of nonnegative upper semicontinuous reals.
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Definition 4.1. Let u,, u; € PQ (with a common domain). Define u; + u, as follows:
if peQ, peuy+uyiff Ap\Ap, (py€ u1AP2€ uAp =p,+ p;). We denote this binary
operation on PQ by + : PQ x PQ— PQ.

Some properties of + are summarized in the next lemma. The proof is straight-
forward and is left to the reader.

Lemma 4.2. (i) +: PQXPQ—PQ is commutative.
(i) If u, ¢ € PQ, u satisfies (2.15), and ¢ is nonnegative, then u+ ¢ <pu.
(iii) If u € PQ satisfies (2.15), then u+ tseg 0=pu.
(v) If u, ¢ € PQ and ¢ satisfies (2.15), then u + ¢ satisfies (2.15).

Definition. Addition for upper semicontinuous reals, @, is the composite

Ry X Ry——— PQ X PQ—— PQ—— Ry,

Theorem 4.3. (Ry, @) is a commutative monoid in S.

Proof. Let u,u,u; u; denote elements of Ry. Since u;@ur=L(iu,+ius)=
L(iuy+ iuy) =u,®u;, ® is commutative. The identity for @ is Tseg 0: 1 = PQ; since
every uy € Ry satisfies (2.15), we see from 4.2(iii) that u+ Tseg 0= p.

Lastly, we must show that addition is associative, i.e. (4@ u) P u3 =1, @ (U, D u3).
Observe that by 4.2(iv), i(u,;@uy)+iu; satisfies (2.15). Since (u;Pur)Pu;=
Lli(u,®us) + ius]l, we apply Lemma (2.16) to obtain

qeil(u@ux)®Dusl iff ag=i(u,®uz)+ iu;. 4.4)

Similarly,

geilu®@u,dux) iff ag=iu+i(u®du;). 4.5)

So, assume aq=<i(u;®u;z)+iu;. Assume p>gq, and let p'=+(p+gq), so that
p>p’'>q. Since p'>q, p’eaq, hence p’e€i(u;+u)@iu;, and hence Hr'dp,
(rei(u®u)Api€iusAp’=r'+ps). Applying Lemma 2.16 again, r’'€i(u,®us)
implies ar’'<iu,+iu,. Now, let t=p—p’; then t>0 and p=p'+t=r'+py+it=
r'+t+ps. Since t>0, r'+t>r', hence r'+teiu,+iu;. Hence, dpdp, (p,€ i\
D€ A’ +t=pi+py). Thus p=r'+t+py=(p+p2)+p3=p+(p2+p3). Now,
P2+ Pi€iuy+ iu; and therefore p,+ piei(u;®us). It follows that py+(pr+p3)e
iu+ i(ua®u;).

Summarizing, we have demonstrated that if ag<i(u,@u;)+iu; and p>gq, then
peiu +i(u®u;). Hence aq<i(u,®uy)+ius implies aq<iu,+ i(u®u3). Using
(4.4) and (4.5), this shows that i[(u,@u)Puzl<ifu®u2®us)). The other
inequality may be derived analogously, hence @ is associative. [

If py, u2€ R{), then Tseg O0<iuy, iuy < iuy + iuy (by 4.2(i0)), iuy + ipr < i(u, @) (by
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2.13(i)), and hence u;@uz€ R{. Thus Ry is also an internal monoid under the
inherited operation of @. Moreover, R{; is also internally complete; to keep the
notation simple, we will denote the inclusion of Rj; in PQ by i, and its left adjoint
by L.

Besides the addition or. [, we shall define a multiplication © : Ry x R{;—Ry.
Of necessity, multiplicatio:: must be restricted to Rj; (e.g. if f is an upper semi-
continuous function, —f it lower semicontinuous).

The definition of © is analagous to that of @ . Start by defining, for u,, u; € PQ,
uy- u2 by

peuy-py iff dp dp; (PreuiAP2E AP =P1+ D).

Then, if u, and u, are nonnegative and satisfy (2.15), so does u, - uz. For uy, u; € Ry,
define uy O u; by uy © u>= L(iu, - iuy). The proof of the next theorem is similar to
that of Theorem 4.3 and is left to the reader.

Theorem 4.6. (i) (Ry, ©) is an internal commutative monoid with identity Tseg 1.
(ii) (Distributive law.) If uy, us, us€ Ry, then

w1y O (U@ u3) =y © u) Dy O us).

The internal completeness of Ry, and Ry, allows one to define a closed category
structure on the semicontinnous reals. For example, let USC(X) denote the set of
upper semicontinuous functions (valued in {0, o]) on a topological space X. As a
category, f—g iff f=g (pointwise). If f, ge USC(X), define fQ g =S+ g (pointwise
sum) and define

hom( f, g) =inf{he USC(X) fgsf+ h} (pointwise inf).

USC(X) is a closed category with this @ and hom.

In general, one can similarly define a closed structure on R/, in any elementary
topos S with a natural number object. Since R/, = [0, o] in S = Sets, this is a generali-
zation of the closed category described by Lawvere in [7]. In the most general sense
then, & possesses all of the desirable properties of a metric-recipient. An investiga-
tion of internal R -valued categories and other questions related to the closed
structure of &/ will appear separately in a forthcoming paper.
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