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Introduction 

It is well known that classically equivalent constructions of the real numbers may 
yield distinct real number objects (e.g. Dedekind reals, Cauchy reals) when carried 
01.11 in topoi other than Sets. We introduce a type of real number, which we call a 
semicontinuous real number, whose construction was suggested by Lawvere [8,9]. 
Such a real number is defined by a single closed cut in the rationals. In Sh(X), for 
example, this construction yields the sheaf of upper (respectively, lower) semi- 
continuous functions. 

Work of Hofmann [3], Hofmann and Keimel [4], and others indicates that the 
sheaf of upper semicontinuous functions is the natural recipient of the norm for 
variable C*-algebras, variable Banach spaces, and variable metric spaces (also, see 
Example 1.4 below). In this paper, we study semicontinuous real numbers through 
examples and by examining the general properties of such objects in an elementary 
topos; we show that the object of nonnegative upper semicontinuous real numbers 
has precisely the properties needed by a norm recipient. After defining semicontinu- 
ous real numbers and looking at some examples, we show that the semicontinuous 
reals are an internally complete poset. The existence of an internal ‘associated sheaf’ 
functor is demonstrated (Theorem 2.12) and is used in discussing the relationships 
between the various real number objects. It is also used to define algebraic 
structures on semicontinuous reals. We conclude with remarks concerning the 
closed category structure of the semicontinuous reals. 

I wish to thank Bill Lawvere, Bill Zame, Stephen Schanuel, and Andre Joyal for 

helpful comments and suggestions. 

1. Definition and examples 

Let S be an elementary topos with a natural numbers object hr. Let Q denote the 
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rationals and let 52 denote the subobject classifier in S. The power objects QX will be 
denoted by PX. 

Definition. Let B E PQ and let p, q denote generalized elements of Q. p is an upper 
semicontinmus reai number in S if ,u satisfies the following condition: 

We denote the subobject of upper semicontinuous reals by i: mu--PQ. One can 
similarly define IF?,, the object of lower semicantinuous reals. 

An equivalent condition defining upper semicontinuous reals (which is used in the 
following examples) is 

vpvq 
( 
flu(P)= A I.@) l 

cl,P > 

The symbol A used in (I .I) refers to the internal 
infernal poset [ 13 J. 

(1*1) 

left-adjoint of the fseg map of an 

Example 1.2. If S= Sets, a closed upper cut of the set of rational numbers is an 
extended real number (-too correspond to the instances in which the cut is empty or 
all of Q). 

Example 1.3. Let X be a topological space, U an open subset of X, and let /!? denote 
the extended real1 numbers [ - =,=I with its usual topology. A function f : U+ a is 
upper semicontinuous iff for each t E p, {x 1 f(x) < t} is an open subset of U. 

In Sh(X), let p be an element of PQ defined over U. We define a function 
fi : U -+ fl? as follows, using the identification of Q with locally constant rational 
valued functions: for each XE U, 

fi(-G = inf(q(x) : xEp(q) and q E Q(U)}. 

Let t E ??, and let XOE {x:&.Y)< t}. Then, fi(xo) c t, so by the definition of fi 
there must be a rational q. such that qo(xo) < t, qOE Q(U), and xoe p(qo). Let V= 

q&u)< t) n U(Ip[qo). V is an open neighborhood of x0 and V/c (x Illi( t}, 
hence fi is an upper semicontinuous function on U. 

Conversely, given any function f: U + I!?, define /E PQ as follows: if V is an open 
subset of U and qE Q(V), 

j; (q)= the interior of {xe V: f(x)(q). 

One can then verify that f satisfies (1.1) and is thus an upper semicontinuous real. 
When thtse operations are restricted to upper semicontinuous functions and 

Jpper semicontinuous reals, we obtain a natural isomorphism between IRU and the 
,heaf of I@-valued upper semicontinuous functions. 

For a construction which uses inhabited open cuts, see Mulvey [I l] or Johnstone 
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Example 1.4. This example, which is based on the preceding one, illustrates the 
natural manner in which upper semicontinuous reals arise as norms in a topos. 
Classically, the norm of a linear map F: Y +Z between normed linear spaces is 
defined by a closed upper cut of real numbers (which could just as well be taken as a 
closed upper cut of rationals): 

llFll= inf{MrO: I(F(y)I( &M II yll for all ye Y}. 

Now, if Y and 2 are normed linear spaces over X (see [l]), the natural extension of 
the definition of the norm of a linear map F: Y +Z gives a continuously variable 
closed upper cut of Q for each XEX as the norm of F, i.e. IlFll is an upper semi- 
continuous function on X. 

Example 1.5. If M is a monoid and m, n EM, we say that bn =n if there exists an 
x E M s,uch that xm = n. A function f : AC+ p is said to be order-reversing if m s n 
implies f(m) rf(n). In the topos of M-Sets (sets with a left M-action), IR, can be 
characterized as the set of all order-reversing functions A&+ R, with M-action 
defined by (mf )(n) = f(nm). The details are analogous to Example 1.3. 

Example 1.6. If P is a poset, let p denote the topological space whose elements are 
those of P and in which the open sets are the right order-ideals of P. Using the equi- 
valence between Sh(p) and SetsP, we can describe IR, in Set8 as the functor whose 
value at p E P is given by (R& = {f : (p, +)+ Ii? 1 f is order-reversing}, where 
q E (p, +) iff q >p; the restriction maps are obvious. 

In general, the semicontinuous reals will be more closely linked with the topos 
structure than are the Dedekind reals. For example, in M-Sets, the Dedekind reals 
are just the constant reals. As another example, consider the fact that while any 
realcompact space can be recovered from its ring of continuous functions, the open 
sets themselves are not in general representable by continuous functions. On the 
other hand, each open set is associated (through its characteristic function) with a 
multiplicatively idempotent semicontinuous function. 

Among the properties of the set of R-valued (nonnegative) upper semicontinuous 
functions on a space X is that it is closed under the pointwise operations on 
functions of addition, multiplication, finite suprema, and arbitrary infima [2]. 
These are desirable properties for a norm-recipient. The main body of this paper 
will be concerned with determining whether (and in which way) these properties 
extend to the object of upper semicontinuous reals in a topos. 

2. Order structure 

For each internal poset A in the topos S, we may define the order-reversing 
morphism Tseg : A +PA; tP E tseg a iff a5 b. An internal poset A is internally 
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complete if fseg has an internal left-adjoint inf : PA-A. Equivalently, A is 
internally complete if lseg : A+ PA has an internal left-adjoint sup : PA-A 
(Mikk.elsen {iO]). If A is internally complete, then so is A* for any object X of S. In 
particular, 52- and hence PX- is an internally complete poset in any topos. The 
internal left-adjoint to fseg : PX -+PPX shall be designated by f7. Note that for any 

wQ, fsww@b 
We give IR, the order which it inherits as a subobject of PQ, i.e., if @, rc/ E IR, then 

Q) 5 v/ iff @ (: iy. If Q E Q, let aq E PQ be defined by p E aq iff p>q. Restated, the 
condition for p E PQ to be upper semicontinuous is 

(2.1) 

In the ensuing proofs, we shall use tools such as the ‘existence principle’ to 
interpret various statements; full details may be found in [5], [6], and [lo]. 

Lemma 2.2. Let F: X --) PERU be a morphism of S. Let F* denote the composite 

Then, F* is an upper semicontinuous real in S. 

Proof. Using (2. I), F* is upper semicontinuous iff for every x: Y-+X and 
y: Y-+Q, qEF*x iff aqsF*x. If x,q are as above, then for every y: W-+Y and 
A : W -+Q, we have 

and 
LYE F*x iff A E 3i(Fxy) implies ~-VE A, (2.3) 

aq I F*x iff A E Z(Fxy) implies aqy<A. (2.4) 

We first show that given (x, q) : Y -+X x Q, q E F*x implies aqr F*x. Let 
( _v, A} : W -+ Y x PQ be given, and assume that A E Zi(Fxy). From the existence 
principle, there is an epic p : V-+Q and a @ : V -+ IQ such that @ E Fxyp and i@ = A/3. 
From (2.3) above, A E Z?i(Fxy) gives qy~ A and hence qy/k A/3. Since AD= i@, 
c,!vp~ i@. But i@ is upper semicontinuous, so qy,4? E i@ implies aqyj35 i@ = AD. Since 
p is epic, aqy IA. Using (2.4), this shows that aq 5 F*x. 

Conversely, assume that aqs F*x, and that A, y are given as above, with 
A E .Yi(Fky). As before, we obtain an epic /? and an upper semicontinuous @ such 
thalt 0 E EY_v~ and i@ = AP. Since aq 5 F*x and A E Zli(Fxy), we obtain (by (2.4)) 
uq_v I A, and hence aqy/?s A/? = i@. The upper semicontinuity of i@ gives 4yp E AP, 
hence q_v~ A, hence q~ F*x by (2.3). Cl 

The preceding lemma shows that (I 0 Zli : PIRu -+PQ is itself an upper semicon- 
tinuous real, hence it factors through i : fRu --+iPQ. Let Inf: PIRU +I?~ denote the 

orphism such that i 3 Inf = n 0 ZZi. Since i and Iii are convariant internal functors, 
Gnce f3 is contravariant, Inf is contravariant. 
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Theorem 2.5. IR, is an internally completeposet. 

Proof. We will demonstrate that Inf is internally left-adjoint to Tseg : &,-+P(I&,), 

i.e. if F: X+P(lRu) and @: X+RU, then 

@ 5 Inf(F) iff FS fseg @. (2.6) 

Before proceeding, note that for every x: Y +X and ,u : Y*PQ, 

and 
@ 5 Inf(F) iff II( E Z(Fx) implies @xrp, 

FS fseg @ iff PE Fx implies ,UE fseg Q>x. (2.8) 

First suppose Qi Hnf(F). A trivial application of the existence principle shows 
that ,U E Fx implies ip E Z(Fx). By (2.7), iu E Zi(Fx) implies i@x< ip. But i&x( i,u iff 
@x=p, and @XI,U iff PE fseg #x. 

Conversely, assume FS fseg # and that ,G E PQ is given, with ,U E Zi(Fx). Since 
,u E .Yi(Fx), there is an epic p: W-H Y and a t,u : W -+ IR, such that ly E Fxb and 
ily=lup. By (2.8), V/E Tseg @xp, hence @X~I w; hence i@xb=iu/=p/& so i@xlp. 
Thus @ 5 Inf(F) by (2.7), which shows that Ifnf and fseg are adjoint. Cl 

Corollary 2.9. lseg : IR, -+P(RU) has an internal left-adjoint, denoted Sup : 

P(hJwhJ* 

The internal completeness of IR, leads to an internal associazed sheaf functor 
L : PQ-+ IRU. A morphism f : A -+I between internally complete posets is said to be 
inf-preserving if the following diagram commutes: 

gf 
PA-PB 

inf, 

I I 

inf, 

A 
f --+ B 

(2.10) 

Lemma 2.U. Let A and B be internally complete posets and let f : A -+B. Then, f is 
inf-preserving iff f is an internal functor and has a left-adjoint g which is sup- 
preserving. 

Proof. See Mikkelsen [lo]. 

Theorem 2.12. i : IR “-++PQ has an internal left-adjoint L : PQ-t IRU. Moreover, L 
is epic and is sup-preserving. 

Proof. Inf was defined so that diagram (2.10) commutes, hence i is inf-preserving, 
hence the desired L exists by the preceding lemma. L is epic because i is manic and L 
is internally left-adjoint to i. Cl 
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The next proposition 
adjointness of L and i. 

J. Z. Rcichman 

summarizes some easy consequences of the internal 

Proposition 2.13. If ,u E PQ and @E mu, then 
(i) i& is the feast upper semicontinuous real which dominates p, 

(ii) Lie = Q), and 
(iii) iLp = 14 iff p is upper semicontinuous. 

Proof. (i) From adjqintness, lp&L, SO p _ < iLp. For the same reason, y s i@ iff 
L/lS#l. 

(ii) Since i@s i@, adjointness gives Lie S@ and i@ &L(i@). But i@=iL(i@) iff 
@ 4 ii@. 

(iii) If p is upper semicontinuous, we can write p = ily for some w : X-+ IRu. Ther?, 
iL,u = i(Liw) = iv by (ii), hence iLp =p. Conversely, iLp =,u trivially implies 
p = i(Lp), and so p factors through IRU. Cl 

The above results generalize the fact that if {J : X-+ l!?} is a family of upper semi- 
continuous functions on a space X, then f = infi fi (pointwise infimum) is an upper 
semicontinuous function. L : PQ-+ IRU is related to the upper semicontinuous 
regularization J of an arbitrary function f : X -+ Ii?; the regularization f is defined 
for each .YE X by 

./Ix) = lim sup f (yb 1 -1 

$ is upper semicontinuous and is the least upper semicontinuous function g such 
that _fsg, i.e. upper semicontinuous regularization is left-adjoint to the inclusion of 
usc(X, @) in the set of all functions X -+IR (where both are categories with f +g iff 

fss,. 
Arbitrary suprema of upper semicontinuous functions can be calculated using the 

regularization: if f = sup, f, is the pointwise supremum, then f is the least upper 
bound (among the upper semicontinuous functions). In general, the internal 
completeness of IRU makes it a more useful real number object (as a norm-recipient) 
than the Dedekind reals in that the greatest lower bound (and 1.u.b.) of families of 
‘real numbers’ always exists. 

The next result points out one use of the internal regularization functor L. 

Proposition 2.14. If @, w : X -+ PQ are upper semicontinuous, then the upper semi- 
wnlinuous bincrry meet and join of @ and w are @ IV,U and iL(@v w), respective/y. 

Proof. Firs?, let x : Y -+X and 4 : Y -+Q be given. Then, 4 E @XA vx iff (7 E $JX and 
4 E w-y i ff cry I 0.~ and crq I I,UX iff cxq 5 @XA wx. Hence Q, A I,U is upper semi- 
iominuous; it is clearly the greatest element of lRci which is dominated by both @ and 
w/ because 2 1’ is a subobject of PQ. 
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Second, iL(@v w) is the least upper semicontinuous real which dominates #V v/ (by 
2.13(i)), @V v is the least element of PQ which dominates both @ and ry, and hence 
iL(@vw) is the upper semicontinuous binary join of @ and w. G 

In many instances, we will be considering a p E PQ which is known to be an upper 
cut, i.e. p satisfies the following condition: 

In other words, p E p * ap 5~. The next result provides a useful description of Lp 
for those ,u EPQ which satisfy (2.15). 

Lemma 2.16. If ,u : X + PQ, then the following are equivalent: 
(i) ~1 satisfies (2.15). 

(ii) for every (x, q) : Y *X x Q, q E iLp iff aq SPA-. 

Proof. (ii)*(i) follows directly from the fact that ~15 iL,u. Conversely, assume (i) is 
satisfied. Define .@ : X-+P such that for every (x,q) : Y-+X x Q, qe Jplx iff 
aq 5~. Now, ,u rJ& Moreover, Jp is upper semicontinuous. Since p s Jp and Jp is 
upper semicontinuous, we obtain iLp IJ~ (by 2.13(i)). On the other hand, if 
q E J&x, then aqrms iLpx. Since iLp is upper semicontinuous, aqr iLpx implies 
qE iLp; hence Jp GLP. Thus, Jp = iLp. Cl 

3. Other real number objects and the semicontinuous reals 

The roster of real number objects in a topos includes the Cauchy reals, the 
Dedekind reals, and the Dedekind-MacNeille reals, in addition to the upper (and 
lower) semicontinuous reals. What relationships, if any, exist among these real 
number objects? For example, it is well known that in Sh(X), the Dedekind reals 
can be characterized as the sheaf of continuous real-valued functions [ 11). Since 
every continuous function is upper semicontinuous, is it generally true that the 
Dedekind reals will be a subobject of IRU? The answer is yes, which we now proceed 
to show. 

Informally, a Dedekind real number is a pair (A, flu> of elements of 529 such that A 
(respectively, ,@ is an inhabited, open lower (upper) cut, and such that 13, and p are 
adjacent and disjoint. The conditions that (A, p) must satisfy are usually formulated 
in the internal language of the topos. These conditions are: 

(DR 1) qd # Zi$$p>ql\pEA) 
(DR2) 4W @ ~P(P<4APE!d 

(DR3) (QEA~\~EPL) * WP 

(DR4) wp =$ (4~~vpw) 

(DR 5) S&e ~~~P(PwO- 
Let lRD -+--+sZQ x SZQ denote the object of Dedekind reals. ‘The properties of m, are 

examined in [5] and in [12] (where they are czG?ed the continuous reals). 



Lemma 3.1. Let rl = (I,, u,), r2 = (iz, ~2) be Dedekind reals. 
(i) I& iff u21ul. 

(ii) q = f2 iff j.i, =p2. 

Proof. The proof of(i) may be found in Johnstone [5], lemma 6.63(ii). The second 
part of our lemma follows directly from (i). 0 

Proposition 3.2. RD is a subobject of IQ. 

Proof. We define f: R, -4Ru to be the composite 

We claim that f is manic, i.e. if rl, r2: X-, IR, and frl =frz, then rl = r2. Let ri= 
(I,, u,): the assumption fr, =fr2 means Lur 4~2. If we demonstrate that u1 = 2.42, 
then we will have ri = t-2 by the preceding lemma. Note that Ui satisfies (2.15) because 
of condition (DR 2) for Dedekind reals. Hence, using the characterization in 
Lemma 2.16 of Lp for those p which satisfy (2.15), we have for any (x, q) : Y -+ 

X x Q, 
aqSulx iff qELu+ 

iff qE Luzx ($1 
iff aq 5 u&x. 

We use the above to show that ur I 2.42. Suppose (x,q) : Y-+X x Q and that q E uIx. 
By (DIR 2), there is an epic /? : V +Yandap:V-+Qsuchthatp<q~andp~urx~. 
Since rr,.@ satisfies (2.19, PE~;,x~ implies apru,x/l. By (*), we then have 
up I u&3. Since p< q/IS, we thus have q/?E ulxfi but /? is epic, so q E 4x. Applying 
the extensionality principle, this shows u1 I u2. Similarly u1 (~2, hence ur = 242, 

r1 = rZ, and $ is manic. 0 

Corsl!ary 3.3. R,, the object of ‘Cauch_v reals’ (as defined in 6.67 of [5]) is a sub- 
object of i+. 

Proof. It is shown in [S] and [12] that lRC is a subobject of IRD. Applying 
Proposition 3.2, we are done. E 

W e note that iRI is isomorphic to IR u: if p E F?u, define -p by qE -p iff -q Ep; 
and similasly for A E RR,. It is clear that --PE IR, iff p E lRU and that --,u~ = --p2 iff 

.u I = u2; hence the desired isomorphism. 

4. Algebraic structures 

‘e $ay p E PQ is nonnegative if p I fseg 0 (0 = additive identity of Q). IR; will 
denote the object of nonnegative upper semicontinuous reals. 
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Definition 4.1. Let pr, ,u~ E PQ (with a common domain). Define ,U~ +p2 as follows: 
if ~EQ, p~pl++yt iff 3pJp2 (p~~~~l\p2~~2~p=pI+p2). We denote this binary 
operation on PQ by + : PQ x PQ+PQ. 

Some properties of + are summarized in the next lemma. The proof is straight- 
forward and is left to the reader. 

Lemma 4.2. (i) + : PQ x PQ+PQ is commutative. 
(ii) If p, @ E PQ, y satisfies (2. IS), and @ is nonnegative, then p + @ 5~. 

(iii) If p E PQ satisfies (2.15), then p + fseg 0 =,~1. 
(iv) If ,u, @ E PQ and @ satisfies (2.15), then ,u + @ satisfies (2.15). 

Definition. Addition for upper semicontinuous reals, 0, is the composite 

ixi 
mc,x m,- PQx PQ ~PQ~Ru. 

Theorem 4.3. (II&, 0) is a commutative monoid in S. 

Proof. Let P,Pu,P~,,~L~ denote elements of RU. Since p1@j,d2=L(ipI+ip2)= 

L(i,u2+ ipl) =p2@4, @ is commutative. The identity for @ is fseg 0 : 1 --+PQ; since 
every p E IR, satisfies (2.15), we see from 4.2(iii) that p + fseg 0 =p. 

Lastly, we must show that addition is associative, i.e. (p +3&)@c~3 = ,U r@ (p2@p3). 
Observe that by 4.2(iv), i(pl @,u2) + i,uj satisfies (2.15). Since (,u~ @p2)@p3 = 
L[i(pI @p2) + i,u3], we apply Lemma (2.16) to obtain 

Similarly, 

SO, assume aqs i(p@& + i,u3. Assume p>q, and let p’= +(p+ q), so that 
p>p’>q. Since p’>q, pkaq, hence p’Ei(pI+p2)@i,u3, and hence W3p3 

(rfEi(1110~2)Ap;Ei~3Ap’= r’ +p3). Applying Lemma 2.16 again, r’E i(pl @p2) 

implies ar’G,u1+i,u2. Now, let t=p-p’; then t>O and p=p’+t=r’+p3+t= 
r’+t+p3. Since t>O, r’+ t>r’, hence r’+tEi,u1+i,u2. Hence, 3p,ZZp2 (p+ip,~ 

p2Eip2Ar’+t=pl+p2). Thus p=r’+t+p3=(p1+p2)+p3=pI+(p2+p3). NOW, 
p2 +p3 E ip2+ i,u3 and therefore p2 +p3 E i(p2@p3). It follows that p1 + (p2 +p3) E 

iP 1+ i(P2OP;). 

Summarizing, we have demonstrated that if aq s i(p@p2) + ip3 and p > q, then 
p E ig I+ i(p2@p3). Hence aq I: i(,u 1 @p2) + i,u3 implies aq 5 i,u 1 -t i(p2@p3). Using 
(4.4) and (4.5), this shows that i[(p l @p2)@,&] 5 ib I @ @2@p3)1- The other 

inequality may be derived analogously, hence @ is associative. Cl 

~~P~,PzE% then TsegOrk, i~+i~r+i~2(by4.2(ii)), ip1+ip2d(p1@p2) (by 



90 J. Z. Reichman 

2.13(i)), and hence pl@p2 E @I. Thus IRC is also an internal monoid under the 
inherited operation of 0. Moreover, IT?& is also internally complete; to keep the 
notation simple, we will denote the inclusion of RG in PQ by i, and its left adjoint 
by L. 

Besides the addition or. b, we shall define a multiplication 0 : lR&x lR;--*lR~. 
Of necessity, multiplication )must be restricted to IRC (e.g. if f is an upper semi- 
continuous function, -f ir, lower semicontinuous). 

The definition of 0 is analagous to that of 0. Start by defining, for pl, p2 E PQ, 

Put*& bY 

Then, if ,ul and pt are nonnegative and satisfy (2.15), so does pul l p2. For ,q, ,u2 e iR&, 

definepI Op2 byp, @pz= L(ipl 0 ip2). The proof of the next theorem is similar to 
that of Theorem 4.3 and is left to the reader. 

Theorem 4.6. (i) (it$, 8) is an internal commutative monoid with identity fseg 1. 
(ii) (Distributive law.) Ifp1,p2,p+ R;, then 

The internal completeness of IRL: and lR& nillows one to define a closed category 
structure on the semicontinuous reals. For e,xample, let USC(X) denote the set of 
upper semicontinuou:, functions (valued in i0, a~]) on a topological space X. As a 
category, f dg iff f rg (pointwise). If f, g E USC(X), define J@g = f + g (pointwise 
sum) and define 

hom(f,g) = inf( h E USC(X) (gsf+ h) (pointwise inf). 

USC&%‘) is a closed category with this @ 2nd horn. 
In general, one can similarly define a closed structure on IR; in any elementary 

topos S with a natural number object. Since R & = [(I,=] in S = Sets, this is a generali- 
zation of the closed category described by Lawvere in [7]. In the most genera1 sense 
then , *T[. possesses all of the desirable properties of a metric-recipient. An investiga- 
tion of internal ?&alued categories and other questions related to the closed 
structure of pi. will appear separately in a forthcoming paper. 
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